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Abstract. The down-Comptonization scattering of hard x-ray d a t i o n  passing through an 
optically thick 'cold' plasma is an important radiative tnnsfer process in x-ray astronomy as 
well as in radiation physics. In this paper, an extended Kompaneets equation which is valid 
both for up-Comptonimion (hi << kTJ and down-Comptonizalion (hi >> kT.) is derived. 
The numerical solutions of this resultant equation in the down-Comptoniwtion process (i.e. in 
the case hD >> kT,, which we are interested in) are presented, e.g. the shin of the emission- 
line centroid and the asymmetry of the line-profile, and the steeplimion of an initial contiuum 
spectrum with a power-law form I ,  - v - ~ .  The potential applications of this improved equation 
in astrophysics and radiation physics are empfwsized. 

1. Introduction 

The study of the radiative transfer process in plasma is an important topic in astrophysics, 
in plasma physics, and in radiation physics [I]. It is the exchange of energy between the 
radiation field and the plasma that causes the variations of the emergent radiation, e.g. the 
spectrum, the intensity, the profile of an emission line, the line shift, the intensity-ratio 
of different lines, and the polarization, etc. Therefore, it is necessary to give a detailed 
consideration of the problem of the energy transfer in order to explain some experimental 
laboratory results, as well as the astronomical observations and to understand the physics 
of some astronomical objects. We emphasize the latter because our main interest is in this 
field. 

For a fully ionized plasma, the radiative transfer has a particular property, where the 
dominant mechanism of exchanging energy between the radiation and plasma is photon- 
electron scattering. The change of the emergent radiation and the accompanying variation 
of temperature of the electron gas in this process is known as Comptonization. Although 
the change of the photon's wavelength in each individual collision is very small, the 
integrated variation of frequency in multiple Compton scattering, which often occurs in 
the astronomical case, is remarkable. Therefore the scattering (Comptonization) is a very 
efficient mechanism to change the emergent spectrum, particularly for the x-ray spectrum. 
The efficiency of the Comptonization process can be evaluated as follows. It is well known 
that the change of photon Wavelength in each collision is AA/A = (2AJA) sinZ0/2 N Ac fA .  
where A, = 0.024 A is the Compton wavelength and 0 is the scattering angle. Therefore the 
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fractional change AA/A is dependent on the initial wavelength. The shorter the initial A ,  the 
larger the change ALIA. For example, the fractional shift is A)./). = if ,I = 5000 A 
but AA/). U lo-’ if A = 0.5 A (hu = 20 keV); as for the vely hard x-ray photon with 
energy - 100 keV, AA/A 1 lo-’. That is why it is particularly important for x-ray and 
p r a y  radiation. 

In principle, a strict theoretical approach to the Comptonization should be based on the 
equation of radiative transfer. However, for the photon-electron scattering process, this 
equation turns out to be rather complicated. The emissivity j ,  in this equation has to be 
expressed by an integral of the intensity I ,  at the same space-point. Therefore, we have a 
complicated integral-differential equation which is difficult to solve. Another approach to 
photon-electron scattering is  the Monte Carlo simulation, but the numerical calculation for 
this problem is troublesome. In order to avoid such difficulties, Kompaneets developed a 
more convenient method-the diffusion approximation. The basic idea is that the whole 
studied system is regarded as a mixed gas which consists of a fully ionized plasma and a 
radiation field, where the change of the frequency spectrum of the radiation field, due to 
the Compton scattering, is formally considered as a ‘diffusion process’ of a photon gas in  
‘frequency space’. In this approach, the photon’s frequency is approximated as a continuous 
variable because of the very small change of the photon’s frequency in each collision, i.e. 
A = U’ - U, [AI << U. When the mixed gas reaches thermal equilibrium the diffusion 
process ceases, and the frequency spectrum turns out to be invariable. In order to describe 
quantitatively the variation of the spectrum with time before reaching thermal equilibrium, 
it is necessary to establish a dynamical diffusion equation for the distribution function of 
photon frequency n(u, t ) ,  

There are two kinds of Comptonizations which have different diffusion equations. If the 
average energy of photons, hii, is much larger than the thermal energy of an electron kT,. 
ha >> kT,, which often occurs in x-ray and p r a y  astronomy, then the average energy of 
scattered photons will decrease. This is known as down-Comptonization or Comptonization- 
softening. On the other hand, the energy of scattered photons will increase when hii << kT,, 
which is known as up-Comptonization or Comptonization-hardening, which often occurs in 
radio and infrared astronomy. Under the condition h? << kT, << Mecz (up-Comptonization), 
the diffusion equation is known as Kompaneets equation 121: 

where x hu/kT.  is a dimensionless photon frequency, c q  is the Thomson cross section. 
Ne is the number density of electron gas, and n(x ,  t )  = n(u, t )  is the frequency distribution 
function of the photon gas, which represents the ‘photon’s number’ in each photon state in 
unit volume at frequency U. Therefore, the real number density of photons in w --t v + du 
will be n(u,  1)(8xu2/c3) du. For a weak radiation field, the ‘photon’s number’ n ( v ,  t )  << I .  

Weymann obtained the same result as that given by Kompaneets [3]. But we would like 
to mention that the Kompaneets equation (1) is correct only if two conditions have been 
satisfied, that is: (i) the system studied (a mixture of radiation field and thermal electron 
gas) has to be a non-relativistic one, i.e. kT. << Mec2 and hu << Me?, and (ii) the system 
studied must be one which consists of a thermal electron gas with high temperature and a 
radiation field with low frequency, i.e. hu << kT,. Therefore the application of Kompaneets 
equation (1) is rather limited. 

After this, Cooper extended the Kompaneets equation (1) from the non-relativistic to 
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the relativistic system [4]: 

whereq = hv,or(q,kT,) = un~[I+ f(kTe)/(I+0.02q)][(1+9x lO-'q+4.2x 10-6q2)]-'. 
Cooper's equation (2) can be used to discuss a scattering gas w1ith very high temperature. 

But we noticed that the condition (ii), hB << kT,, is still necessary for Cooper's equation. 
That is, the studied system must be one with high temperature and low frequency. 

Differing from Kompaneets, Weymann and Cooper, we emphasize the importance of a 
non-relativistic scattering process with condition h i  >> kT, in practice (say, a hard x-ray 
passing through a 'cold' plasma). We call such a process down-Comptonization, which is 
potentialy important in hard x-ray astronomy and physics [5-71. But, so far, there is no 
appropriate quantitative description for the down-Comptonization in the case hC >> kT,. 
In this paper, an extened Kompaneets equation which is valid both for up-Comptonization 
(hi, c kT,) and down-Comptonization (hJ > kT,), including hi, - kT,, is given and its 
basic properties and potential applications in x-ray astronomy are discussed in section 2. In 
section 3, some conclusions and discussions are given. Some instructive solutions of this 
equation for typical astronomical problems are presented in section 4. 

2. The extended Kompaneets equation for kTe << Mecz and hv << Mecz 

Consider a 'mixed gas' consisting of a plasma and a photon gas under the condition 
kTe (< Mec2 and hu << Mecz. We make two assumptions. (i) The common thermal 
equilibrium between these two gases is not yet reached, but the electron gas itself is already 
in thermal equilibrium due to the fact that the interaction between electrons is the Coulomb 
long-range force. Therefore, the Maxwellian distribution f @) = fo exp(-p2/2MekT,) 
can be used to describe the electron gas. (ii) Because of the frequent Compton scattering, 
the distribution of photon-frequency n(u ,  t )  is assumed to be isotropic. independent of the 
directions of the wavevector k and n(u. f) will change with time before reaching the thermal 
equilibrium. For such a mixed-gas system, the change rate of the 'photon's number' an/& 
is given by the diffusion equation which is derived as follows. 

Consider an individual collision between an electron with momentum p and a photon 
with frequency U, the energy and momentum conservations in the non-relativistic limit are 

where p' and U' represent the momentum of the electron and the frequency of photon, 
respectively, after the collision, n and n' are the directions of the photon before and after 
the collision. Such a process @, U. n) -+ @', n') leads to a decrease of the photon number 
n(u ,  t ) .  Denoting the transition probability of this process by dW and the electron density 
in p -+ p + d p  by Ne f @) d'p, taking the tenuous electron gas as a classical system, and 
the photon gas as a boson system, the transition number of this collision is 

(1 +n')nNef@)d3pdW 

where n = n(u, t ) ,  n' = n(v', t )  are the photon number before and after the collision, 
respectively. Similarly, the inverse process @', v', n') + @, v, n) leads to an increase 
of n(v. t ) .  The transition number is 

(1 t n)n'N, f@')d'p'dW 
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Therefore. the change-rate anla! can be written as 

dW[n(l t n ' ) f@)  - n'(l + n)  f @')I 
at 

(4) 

Here we would like to mention that the transition probability dW is the same in the two 
processes @, U, n) @I. v', n'), the reason is that we can approximately replace the 
Klein-Nishina cross section by the classical Thomson cross section duT/dO which has the 
same value for both the scattering angle 8 and IT - 0 (see (10)). It can be seen that it 
should be zero if we insert the thermal equilibrium distribution n ( u )  = - I)-' and 
f @) = foexp(-p2/2M.kT,) into (4). indicating that the Comptonization is effective only 
before reaching the common thermal equilibrium. 

Equation (4) can be simplified since the electron gas is non-relativistic, i.e. kT, << Mec2, 
so the change of frequency is Yery small in each collision, A U'- U ,  ]A1 << U. Expanding 
in terms of the small quantity A to second order under the condition hulA[ << kT., and 
replacing the frequency U by a dimensionless frequency x ,  x hu/kT,, equation (4) 
becomes 

In the following derivations, we first calculate the second integral on the right-hand side of 
(5). Let 

I -h2Jd3p /dW f@)A2. 

The expression A 
first order of the small quantity A, we obtain 

v' - U in the integral can be obtained from (3), and only retaining the 

(7 ) 
hcup. (n - n') + (hV)'(l - n') h a = -  

Mec2[1 + (hV/MeC2)(l -n.n') - @.n' /Mec2)]  ' 

Because of hv < M,cz and kT, <( M,c2, the value in the square bracket in the denominator 
of (7) nearly equals 1. Thus, we have 

Under the condition kT, << hv < M.c2, the second term in (8) will be comparable with the 
first term and cannot be neglected. Inserting (8) into (7). the integral I can be reduced to 

I =h2/d3ppddW f@)A 

= /" d3p/dW f@)[ - $p. (n - n') - -(I (hv)' - n . n') 
MeC2 



Comptoniurtion process of hard x-ray 2909 

with 

Fixing n - n! as the --axis and denoting the angle between p and n - n! as 0, we have 

Inserting f ( p )  = f~:.up(-p2/ZMekT,) into theexpression I , ,  we have Jpz f(p)4xp2dp = 
3M,kT,, therefore 

Similarly we have 

22:33 $ d W l n  - n'l(l - n.n' I3 = - p3f(p)cos0sinOdpd0drp = 0 )I J 
Therefcrr. we have tocalculatethe integrals JdW(1-n.n') and JdW(I -n.n')' for 

all scattering directions B. In the non-relativistic limit, the Compton differential scattering 
cross section can be approximately replaced by the Thomson cross section, so the transition 
probability is 

(10) 

where ro = e2/Mec2 is the classical radius of the electron, 0 is the scattering angle, 
cos e = n . n'. From (10) we see that d W is symmetric for angles 0 and I - 8. Therefore, 
J n .  n'dW = Jcose dW = 0 and J( 1 - n . n') dW = J d W  = uTc, J(l - n . n')ZdW = 
rcr , 'J( l  + ~ o s ~ e ) ~ s i n e d e  = 7/.%Tc. Hence, 

dW = C d U ~ = ~ - ( l + c o s ~ e ) 2 ~ s i n e d e  4 
2 

and 

I = I, -P 1 2 .  

Now we calculate the first integral in (7).  Let 
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It is difficult to calculate (12) directly, but it can be deduced simply from the integral value 
I given by (1 1) from consideration of the conservation of the total number of photons in 
the whole photon-electron scattering process. The conservation equation in the ‘frequency 
space’ can be written as [8] 

where j is the flux of photons defined in the frequency space where the Cartesian coordinates 
are XI, x2,  x3 respectively, therefore JXI + x2 + X I  = x = hv/kT, .  Using the spherical 
(x, 8 ,  p) to replace (XI, XZ- xd, we have V . j = ( l/xz)a(x2 j)/ax and (13) is obtained. 
Equation (13) can be rewritten as 

Comparing (14) with (3, i t  is seen that the flux of photons j has to be taken in the form 

The reason is that in (5) an/ar is linearly dependent on the second derivative azn/axz. 
i.e. the coefficient of a2n/axz in (5 )  does not contain n. Therefore it is seen from (14) 
that only the form j (x )  - [&/ax + f (n ) ]  or j (x )  = g(x)[an/ax + f ( n ) ]  is possible and 
the proportional coefficient g ( x )  is independent of n. Furthermore, it can be deduced that 
the function f ( n )  must be taken as f ( n )  = n(n + 1) due to the fact that when the photon 
gas reaches thermal equilibrium we have j(x) = 0, therefore a n / a x  = - f (n). On the 
other hand, in this case the distribution function is Planckian, n ( x )  = (e“ - l)-I, therefore 
an/ax = -n(n + 1). So, we get f (n)  = n(n + I ) ,  and (15) is obtained where g ( x )  is a 
coefficient which is to be determined. Inserting (15) into (14), we get 

1 . (16) 

On the other hand, equation ( 5 )  can be written as 

] (17) 
an + 2(n + 1)- + n(n + I )  ax , 

Comparing (16) with (17) and noting that the coefficient of a2n/ax2 should be the same, 
g ( x )  is obtained as 

(18) 

$(kTe/MecZ) .  Inserting (18) into (16) and 

Ne g(X) = --(kT,)-’f 
2 -AxZ(l + Bx’) 

where A(x) = (kTe/M.c2)N,sc ,  B(x) 
comparing (16) with (17) again, we obtain 

( 19) 

Therefore, the extended Kompaneets equation under the condition kT, (< M.cz. and 
hu << M.c2 is obtained as follows: 

k Te 

Ne 
H = -A[4x - x2 + 6x3 - B x 4 ] .  

l a  7 kT. an _ = -  an kTe N e o T c - - [ x 4 ( 1 + - - x ’ ) [ - + n ( n + I ) ] } .  1 0 ~ ~ ~ 2  ax (20) 
at M.CZ x z  ax 
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3. Conclusion and discussions 

The extended Kompaneets equation (20) is useful in astrophysics and radiation physics. In 
particular. the condition kT, << hu << Mec2 is usual in laboratories and in astrophysical 
circumstances. For example, the condition kT, << hu < Mec2 is satisfied when the hard 
x-ray radiation with average energy of photons hu = 10-100 keV is passing through a 
thermal plasma with T, = IO7 K. Obviously, in this case, the emergent spectrum will 
be changed. Usually there is only a qualitative or semi-quantitative approach to the 
down-Comptonization process because of the fact that the Monte Carlo calculation is too 
complicated and is not very helpful for insight into the physics of the process [9, 101. The 
diffusion equation (20) presented i n  this paper is appropriate to quantitatively describe the 
down-Comptonization, which can be used to replace the usual radiative transfer equation 
and some potential applications would be expected (see section 4). 

Here we would like to point out some properties of equation (20). (i) The structure 
(l/x2)a/ax(. . .) ensures the conservation of the number of photons in the scattering process 
(cf (20) with the continuity equation (13)). (ii) The structure anlax + n(n + 1) ensures 
an/at  = 0 when the radiation field reaches thermal equilibrium. (iii) In the low-frequency 
limit, i.e. if x hu/kT,  (< 1, equation (20) returns to the Kompaneets equation (1). (iv) 
Equation (20) is only suitable to describe the ‘diffusion’ in the ‘frequency space’. If the 
radiation field itself is also inhomogeneous in space, then n = n ( x ,  T ,  t ) ,  and a space- 
diffusion term V . (DVn)  must be added to (20). Then (20) becomes 
_ = _ _  an kT, N , a r c l ~ ( X 4 ( 1 + - - x Z ) [ a n + n ( n +  I kT, l ) ] / + V . ( D V n ) .  (21) 
at  M ~ C Z  xz ax 10 Mec ax 

4. Some typical numerical solutions 

Equation (21) has potential applichions in x-ray and p r a y  astronomy [ l l ,  121. As an 
example, we discuss an emergent spectrum of an x-ray point source (e.g. in an x-ray binary). 
For the Comptonization of photons in a finite medium, the isothermal uniform-sphere model 
is generally accepted [3], where an x-ray point source is surrounded by an isothermal sphere 
of cooler gas. One can imagine the x-ray point source as a compact star, e.g. a neutron star, 
white dwarf or black hole, and the cooler plasma as the accretion gas which surrounds the 
star. The x-ray emitted from a central point source is subjected to the down-Comptonization 
in this sphere. Ross et a1 pointed out that, for the compact x-ray source, this model is close 
to reality, althougth such an idealized model is still bound to be a crude approximation to 
the very complex geometric and thermal structure [5]. 

In order to study the effect of downComptonization on the emergent x-ray spectrum, 
equation (21) must be solved numerically with given initial and boundary conditions. In 
spherical coordinates, in principle, the initial and boundary conditions of (21) can be taken 
as follows: 

n(x,O,t) = j ( x )  
n ( x , r , 0 ) = 0  O c r c R  

t 2 0 

an C 
-D-1 = - n ( x .  R ,  t )  

ar r=R 2 

The first two conditions mean that, from t = 0, there is a stable x-ray source in the centre 
of the sphere and the frequency distribution function of photons in the source is f ( x ) .  The 
boundary condition (see the last condition) is called Eddmgton’s approximation which is 
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suitable under the assumption of isotropic radiation, where I ( x .  t )  = -Dan/arl,,R is the 
flux density of phstons on the surface of the sphere. 

Solving (21) under conditions (22). the frequency distribution function n ( x ,  r,  t )  can be 
obtained and :he emergent x-ray spectrum should be 

(23) / ( x ,  t )  - x3n(x, R ,  t ) .  

Because [her. exists a central stable source, when t is large enough, n ( x ,  r, f) will be 
unchanged wid! i, and 

~ ( x )  ,., x3n(x ,  R) (24) 
where F(.r) is the required x-ray spectrum after down-Comptonization. If a pulse Rux of 
x-rays with a frequency distribution function f ( x )  is emitted at the centre of the sphere at 
f = 0, the first condition in (22) is replaced by 

n ( x ,  0 , t )  = f(x)W). (25) 
The x-ray spectrum can be written in the form 

F ( x ) - ~ ~ ~ ~ n ( x . R , r ) d t .  

Equations (24) and (26) are equivalent to each other. Equation (24) represents the 
emergent spectrum of photons from the surface of the sphere at any given time t but which 
are emitted from the centre of the sphere at different times. However, equation (26) is a 
spectrum of photons which are emitted from the centre at an instant of time, but which 
emerge from the surface at different times. 

Equation (21) can be further simplified by separation of variables. For the compact x-ray 
source in normal conditions, the radiation field is often thin enough, i.e. n ( x ,  r ,  t )  << 1. If 
we neglect the term with order n2, equation (21) becomes a linear-differential equation. 
Furthermore, the diffusion coefficient in (21) is D = c/3Ncuc = c/3N,q = constant 
due to the fact that the Klein-Nishina cross section uc is slowly varying with frequency U 
and uc = UT (Thomson cross section) in the x-ray frequency range. Putting n ( x ,  r, t )  
W ( x ,  t ) P ( r ,  t ) .  in spherical coodinates, equation (21) and its condition (22) can be written 
in two sets of independent forms: 

= O  P(O,O)=l p(r ,O)=O O < r . c R  

(28) 
C 

- D E I  = - P ( R , t ) .  2 
ar r=R 

Because the emission and absorption of the scattering medium itself is neglected, this 
diffusion equation does not contain a source, so we put zero on the right-hand side of 
(27) and (28). Equation (28) is a standard space-diffusion equation and P(r.  t)lR, which is 
independent of frequency x ,  is obviously related to the escape probability of x-ray photons 
from the surface r = R. W ( x ,  t )  represents a distribution of photons in frequency space, 
which is varied with time during the down-Comptonization process. 

In the following, only (27) is used to discuss the effect of down-Comptonization on the 
emergent spectrum because P(R. t )  is an unimportant factor for the whole x-ray spectrum 
(see (26)). In this paper, two typical primary spectra are considered. 
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Figure 1. The evolution of an initial Gaussian Figure 2. The evolution of an initial power-law 
specvum. The labels I ,  2 a d  3 represent times f = 0. continuum. The labels 1.2 mnd 3 represent times t = 0. 
0.05 and 0.1 s, respectively. 0.025 and 0.05 s, respectively. 

(a) An emission line with Gaussian form. 
The x-ray emission line arises from H-like or He-like Fe-ions (i.e. Fe XXVI) and is 
often broadened by very complicated bulk motion in the source. The spectral profile 
usually has a Gaussian form: 

I ,  = exp[-Co(v - (29) 

where vo is the central frequency, both A0 and CO are constants. In this case, the initial 
condition can be written as 

(30) nix, 0) = f ( x )  - x - ~  exp[-Cl(x - xo)']. 
(b) A power-law c o d m u m  emission. 

The x-ray radiation from some astronomical objects (e.g. BL Lacertae objects, Seyfert 
galaxies and qazsars) are usually characterized by a power-law continuum 

I ,  = B O P  v 1 < v $ V L  (31) 
where the energy index U - 0.5-1.6 and BO is a constant. In this case, the initial 
condition is taken as 

where XI, x2 are the upper and lower limits of  the energy range, respectively. 

Equation 27) is solved numerically with these initial conditions by the finite-difference 
method, win2 the following parameters: re = 5, R - IO9 cm, Ne - 10I6 and 
T, - 107K [12, 131 for a typical point source. The interesting results about the evolution 
of the x-ray .pectrum due to downComptonization has been obtained. Figure 1 displays 
the evolution of the profile of an x-ray emission line with initial Gaussian form. It is 
easily seen from figure 1 that: (i) the peak intensity decreases with an increase of diffusion 
time; (ii) the peak position is obviously shifted downwards to lower energy, indicating that 
the average effect of photon-electron scattering makes photons lose their energy gradually 
when the x-ray photons are passing through a cooler electron gas; (iii) an asymmetric line 
profile appears. The red side becomes clearly steeper than the blue side, which is the result 
of competition between 'diffusion' (- a2n/ax2 term) and 'convection' (- anlax term) in 
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(27); (iv) the FWHM (full width of half maximum) becomes larger with increasing time f. 
In figure 2, the evolution of a power-law continuum (1-10 keV) with index 01 = 0.7 is 
presented. As expezted, the initial spectrum shown as an inclined line with a slope 01 in 
the In 1-111 h v  diagram is changed in such a way that the intensities in the high-energy part 
become lower but become higher at the low-energy end, implying that photons with high 
frequency have a tendency to shift to lower frequency during the downComptonization 
process, which leads to an 'accumulation' of photons with lower frequency. AI1 of these 
evolution characteristics are in accordance with our intuition. Equation (21) with these 
two typical initial conditions is expected to be useful in interpreting the observations and 
understanding the physics in some astronomical objects. 
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